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Abstract
Factor graph optimization (FGO) recently has attracted attention as an alterna-
tive to the extended Kalman filter (EKF) for GNSS-INS integration. This study
evaluates both loosely and tightly coupled integrations of GNSS code pseudor-
ange and INS measurements for real-time positioning, using both conventional
EKF and FGO with a dataset collected in an urban canyon in Hong Kong. The
FGO strength is analyzed by degenerating the FGO-based estimator into an
“EKF-like estimator.” In addition, the effects of window size on FGO perfor-
mance are evaluated by considering both the GNSS pseudorange error models
and environmental conditions. We conclude that the conventional FGO outper-
forms the EKF because of the following two factors: (1) FGO uses multiple iter-
ations during the estimation to achieve a robust estimation; and (2) FGO better
explores the time correlation between the measurements and states, based on
a batch of historical data, when the measurements do not follow the Gaussian
noise assumption.
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extended Kalman filter, factor graph optimization, GNSS, INS, integration, navigation, posi-
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1 INTRODUCTION

The Global Navigation Satellite System (GNSS) provides
all-weather and globally referenced positioning in outdoor
environments. However, the accuracy of GNSS positioning
may be severely degraded in urban canyons with tall build-
ings, due to the multipath effect and non-line-of-sight
(NLOS) (Groves, 2013) reception caused by reflections
from and blockage by buildings. In contrast, an inertial
navigation system (INS) (Zhuang & El-Sheimy, 2015;
Zhuang et al., 2016) is less dependent on environmental
conditions and provides relatively linear acceleration and
angular velocitymeasurements at a high output frequency.
However, INS suffers from error accumulation over time.
Therefore, the GNSS and INS are complementary, and

their integration to formGNSS-INS is a promising solution
for vehicular positioning.
Various GNSS-INS integration frameworks were

reviewed in Angrisano (2010). Thus far, the most integra-
tion solutions available are loosely coupled (LC) (Deng
et al., 2017; Hsu et al., 2015; Solimeno, 2007), tightly
coupled (TC) (Petovello, 2003), and ultra-tightly cou-
pled (UTC) (Gao & Lachapelle, 2008) integrations. UTC
integration requires the baseband signal processing of
the GNSS receiver to be changed, which cannot be done
by most GNSS-INS integrated system developers. The
key difference between LC and TC integrations is in the
measurement domain that is used. In LC GNSS-INS inte-
gration, the position and velocity estimated by the GNSS
receiver are directly incorporated into the INS navigation
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solution. In contrast, TC integration uses raw GNSS mea-
surements, such as pseudorange, Doppler frequency, and
carrier phase measurements. TC GNSS-INS integration
based on the extendedKalman filter (EKF) performs better
than LC integration, as shown in Petovello (2003), largely
because the estimator is optimized over a wider range of
possibilities. In summary, TC GNSS-INS integration using
the EKF is a common solution in current applications.
The recently proposed factor graph optimization (FGO)

(Dellaert & Kaess, 2017) method is akin to a well-known
approach in the robotics field for the development of visual
(Qin et al., 2018) or light detection and ranging (LiDAR)
simultaneous localization and mapping (SLAM) (Wen
et al., 2018) to integrate diverse sensor measurements
through nonlinear optimization. FGO also exhibits huge
potential for GNSS-INS integration and therefore has
attracted considerable attention (Li et al., 2018; Wen, Bai
et al., 2019; Zhao et al., 2014, 2016). However, no previous
study has used urban datasets to compare the perfor-
mances of FGO and EKF algorithms for the development
of low-cost LC and TCGNSS-INS integrations. The present
paper aims to fill this gap, by showing how FGO can help
mitigate the effects of GNSS outlier measurements on
GNSS-INS integration and comparing the results with
those obtained with the EKF estimator. In addition, we
analyze the effects of window size on FGO performance
and discuss the computational efficiencies of EKF and
FGO.
The remainder of this paper is structured as follows:

The studies related to the application of the EKF and FGO
for GNSS-INS integration are reviewed in Section 2. The
methodologies used to evaluate the four GNSS-INS inte-
grations are presented in Section 3, and their experimental
evaluations are presented in Section 4. Finally, conclusions
and future work are presented in Section 5.

2 RELATEDWORK

2.1 Role of EKF in GNSS-INS integration

The Bayesian filter (Thrun, 2000) has dominated GNSS-
INS integration since the early 2000s. The Kalman filter
(Welch & Bishop, 1995), the EKF (Julier & Uhlmann, 1997;
Roysdon & Farrell, 2017), and the unscented Kalman filter
(Wan & Van Der Merwe, 2000) are extremely popular,
due to their maturity and computational efficiency in
implementations. Several studies (Crassidis et al., 2007;
Groves, 2015; Liu et al., 2010) integrated GNSS-INS sensors
using an EKF estimator. Numerous practical applications
demonstrated the robustness and effectiveness of the
EKF in GNSS when the measurement quality is reason-
able and the error noise is appropriately modeled. For
example, EKF-based GNSS-INS integration is effective

in both sparse and open areas with good sky visibility.
The conventional EKF efficiently achieves the optimal
estimation if: 1. the first-order Markov chain is used, and
2. the random noise is modeled as Gaussian distribution
(Barfoot, 2017). However, this is seldom the case when
a GNSS receiver is located in urban areas. According to
the findings obtained in (Zhao et al., 2016) and (Wen,
Kan et al., 2019), GNSS measurements are non-Gaussian-
distributed and highly time-correlated in urban canyons.
Therefore, EKF-based sensor fusion fails to achieve
optimal performance in such areas. From a mathematical
perspective, under the Markov assumption, the EKF only
evaluates the Jacobians at a single time-step (i.e., performs
a single iteration) to achieve its recursive form. Thus, if
an outlier is misjudged as a healthy measurement and the
corresponding uncertainty is not modeled appropriately,
the EKF is highly likely to be misled. This is unacceptable
in applications that require accurate positioning services,
such as unmanned aerial vehicles (Saripalli et al., 2003)
and autonomous driving vehicles (Litman, 2015). In
contrast, outlier measurement is frequently performed
for GNSS positioning in urban canyons. To improve the
performance of outlier measurement, the previous epochs
of the state in the state vector may be considered. How-
ever, this substantially increases the size and decreases the
convergence of the EKF estimator (Valiente et al., 2014).
Recently, the multistate constrained Kalman filter

(MSCKF) (Li & Mourikis, 2013) was proposed for use in
a visual SLAM field to integrate the information obtained
from an INS and a camera. The MSCKF updates the states
based on the geometry constraints of the feature measure-
ments conducted inside a sliding window. However, to
reduce the size of the features, their states are eliminated
from the MSCKF by using a nullspace matrix. In addi-
tion, the EKF performance (Julier &Uhlmann, 1997) relies
on accurate linearization, due to the nonlinearity of the
observation function, and only a single linearization is per-
formed in the EKF. Thus, the linearization accuracy relies
heavily on the initial guess of the state. To address this
issue, an iterated Kalman filter (Bell & Cathey, 1993) was
used to performmultiple iterations during the update step,
via the Gauss-Newton method, which helped to mitigate
the error generated from the linearization steps.

2.2 FGO in GNSS-INS integration

The recently proposed FGO formulation (Indelman et al.,
2013) has opened a new avenue formultisensor integration
(Chen & Gao, 2019; Pfeifer & Protzel, 2019a, 2019b). It is
represented as a probabilistic graphical model containing
various nodes associated with the system states and factors
representing the measurements. The factor graph encodes
the posterior probability of the states over time, and unlike
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the conventional EKF-based integration, considers both
historical measurements and system updates to optimize
the complete state set. In this case, the historical infor-
mation is used in FGO, and after all measurements and
states are encoded into a factor graph, the sensor fusion
problem is iteratively solved through optimization via the
Gauss-Newtonmethod. Therefore, the error resulting from
the linearization steps is mitigated. Moreover, FGO han-
dles delayed measurements, as these are simply additional
sources of factors that are added to the factor graph as
they are received. Thus, FGO is used in various challeng-
ing GNSS scenarios (Bhamidipati, 2018; Huang, 2016; Wat-
son & Gross, 2018; Zheng Gong, 2018), and the authors
in (Pfeifer & Protzel, 2018) showed the strong potential of
FGO in sensor fusion, even when the sensor noise is mod-
eled with a non-Gaussian distribution.
Researchers at the Georgia Institute of Technology

(Indelman et al., 2012) used simulated data to demonstrate
that the use of FGO in LCGNSS-INS integration led to bet-
ter performance than the use of the EKF estimator. How-
ever, there was only a limited improvement in LC inte-
gration. A team from Tsinghua University (Li et al., 2018)
extended this line of research by studying TC GNSS-INS
integration and obtained substantially better performance
than that achieved with the EKF estimator. Another study
analyzed the performance of TC GNSS-INS–fisheye cam-
era integration (Wen, Bai et al., 2019) using FGO based on
a challenging dataset collected in urban canyons. In this
study, a fisheye camera was innovatively used tomodel the
uncertainty of GNSS pseudorange measurements before
its integration with INS using FGO. The results indicated
that TC FGO performed better than the TC EKF estimator.
However, the LC integration performance of the EKF and
FGO was not evaluated (Wen, Bai et al., 2019).
In another approach, researchers at the University

of California, Riverside (Zhao et al., 2016), proposed an
optimization-based sliding window for the integration
of differential GNSS (DGNSS) and an INS, which they
named the contemplative real-time (CRT) method. Based
on sensor measurements, a Gauss-Newton method was
then applied to optimize the states inside the window. CRT
shares the same batch-processing theoretical basis with
the factor graph approach. Moreover, its window is similar
in size to the fixed-lag size considered in Indelman et al.
(2013). The authors in Zhao et al. (2014) presented a CRT
method for DGNSS-INS integration with a window size
of 10 s and demonstrated the advantage of CRT over the
TC EKF estimator. The error sources for the pseudorange
measurements were mitigated through double-difference
analysis before the CRT was integrated with the INS, lead-
ing to decimeter-level positioning accuracy. Therefore, the
applicability of CRT in challenging urban canyons using
a low-cost GNSS receiver, which may introduce a large

pseudorange error, is yet to be explored. Continuous works
are presented in Zhao et al. (2016) by adding more mea-
surements into the CRT. However, CRT performance relies
heavily on the size of the sliding window. Our published
conference paper showed that different window sizes led
to different performance improvements. The same phe-
nomenon also was observed in our previous study (Wen,
Kan, et al., 2019). As an extension to that study, the present
paper makes two additional contributions, as below:

∙ An extensive literature review is conducted, and a
detailed analysis of existing sensor fusion schemes,
including iterative EKF-, MSCKF-, and CRT-based
fusion methods, is performed.

∙ Additional experimental analyses are conducted. A sky-
view image is provided, and a satellite is projected onto
this image to show the environmental conditions. In
addition, more detailed error modeling of the pseudo-
range measurements based on the Gaussian mixture
model (GMM) is conducted to analyze the effect of the
window size on FGO performance.

3 METHODOLOGY

This study evaluates the following four GNSS-INS inte-
grations: 1. EKF-based LC GNSS-INS, 2. EKF-based TC
GNSS-INS, 3. FGO-based LCGNSS-INS, and 4. FGO-based
TC GNSS-INS integrations. We follow the approaches
described in Falco et al. (2017) and Li et al. (2018) for imple-
menting EKF- and FGO-based integrations, respectively.
Note thatwe only evaluate positional performance, and the
estimated position state lies in the Earth-centered Earth-
fixed (ECEF) frame. We also only use the linear acceler-
ation measurement and attitude provided by the attitude
and heading reference system (AHRS), which is a com-
mercial solution of the INS used in this study. By propa-
gating the acceleration measurements, we determine the
difference in the velocities between the two epochs. Sim-
ilar to Li et al. (2018), we use a constant-velocity motion
model to derive the positional difference between the two
epochs. These two steps constitute the implementation of
the INS mechanism in FGO. However, to determine GNSS
positioning, we use raw pseudorange measurements. The
methodologies of the abovementioned four integrations
are introduced as follows.

3.1 LC GNSS-INS integration using the
EKF

The flowchart of the implemented EKF-based GNSS-INS
integration is shown in Figure 1. The state-space of the
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F IGURE 1 Flowchart of the loosely
coupled (blue line) and tightly coupled (red
line) GNSS-INS integrations implemented
using the EKF [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

system (𝐱𝑘) is represented as

𝐱𝑘 =
(
𝐗
𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝐕

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝐁

𝑏𝑜𝑑𝑦

𝑘,𝑟

)𝑇
, (1)

where 𝐗𝑒𝑐𝑒𝑓
𝑘, 𝑟

= (𝑥
𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝑦

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝑧

𝑒𝑐𝑒𝑓

𝑘,𝑟
) represents the position

of the GNSS receiver in the ECEF (denoted by the sub-
script r) (Groves, 2013) at a given epoch k, 𝐕𝑒𝑐𝑒𝑓

𝑘,𝑟
=

(𝑣
𝑒𝑐𝑒𝑓

𝑘,𝑟,𝑥
, 𝑣

𝑒𝑐𝑒𝑓

𝑘,𝑟,𝑦
, 𝑣

𝑒𝑐𝑒𝑓

𝑘,𝑟,𝑧
) denotes the velocity of the GNSS

receiver, 𝐁𝑏𝑜𝑑𝑦
𝑘,𝑖𝑛𝑠

= (𝑏
𝑏𝑜𝑑𝑦

𝑘,𝑥
, 𝑏

𝑏𝑜𝑑𝑦

𝑘,𝑦
, 𝑏

𝑏𝑜𝑑𝑦

𝑘,𝑧
) denotes the bias of

the accelerometer in the body (INS) frame, and 𝐑𝑙𝑜𝑐𝑎𝑙
𝑘,𝑟

denotes the attitude in the local frame [the east, north, and
up (ENU) frame] provided by the AHRS.
The inertial measurement unit (IMU) measurements

are expressed as follows:

𝐀𝑟𝑎𝑤
𝑘

=
(
𝑎
𝑏𝑜𝑑𝑦

𝑘,𝑥
, 𝑎

𝑏𝑜𝑑𝑦

𝑘,𝑦
𝑎
𝑏𝑜𝑑𝑦

𝑘,𝑧

)𝑇
, (2)

where 𝑎𝑏𝑜𝑑𝑦
𝑘,𝑥

, 𝑎
𝑏𝑜𝑑𝑦

𝑘,𝑦
𝑎
𝑏𝑜𝑑𝑦

𝑘,𝑧
represent the acceleration mea-

surements performed in the INS frame. As the estimated
state 𝐱𝑘 lies in the global frame (ECEF), the acceleration
measurements must be transformed from the INS frame
to the global frame, based on the attitude obtained from
the AHRS. The transformed acceleration measurement
in the global frame, 𝐀𝑒𝑐𝑒𝑓

𝑘
= (𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑥
, 𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑦
, 𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑧
)𝑇 , can be

expressed as follows (Groves, 2013):

𝐀
𝑒𝑐𝑒𝑓

𝑘
= 𝐑𝐺𝐿 𝐑𝐿𝐵

(
𝐀𝑟𝑎𝑤
𝑘

− 𝐁
𝑏𝑜𝑑𝑦

𝑘,𝑖𝑛𝑠

)
, (3)

where 𝐑𝐺𝐿 is the transformation matrix used to transform
the acceleration measurement from the local frame to the
global frame based on 𝐱𝑘 (see the Appendix for details). A
generic dynamic model of EKF-based LC GNSS-INS inte-
gration can be written as

𝐱𝑘 = 𝑓 (𝐱𝑘−1, 𝐮𝑘) + 𝐰𝑘, (4)

where 𝑓(𝐱𝑘−1, 𝐮𝑘) denotes the state transition function,
and can be expressed as

𝑓 (𝐱𝑘−1, 𝐮𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑥
⋅ Δ𝑡

𝑦
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑦
⋅ Δ𝑡

𝑧
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟, 𝑧
⋅ Δ𝑡

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑥
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘−1,𝑥
⋅ Δ𝑡

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑦
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘−1,𝑦
⋅ Δ𝑡

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑧
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘−1,𝑧
⋅ Δ𝑡

𝑏
𝑏𝑜𝑑𝑦

𝑘−1,𝑥

𝑏
𝑏𝑜𝑑𝑦

𝑘−1,𝑦

𝑏
𝑏𝑜𝑑𝑦

𝑘−1,𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where Δ𝑡 denotes the time difference between two epochs,
and the function 𝑓(𝐱𝑘−1, 𝐮𝑘) is based on the constant-
velocity model.
Besides, the measurement model of EKF-based LC

GNSS-INS integration can be expressed as

𝐳
𝐺𝑁𝑆𝑆,𝐿𝐶
𝑘

= ℎ𝐺𝑁𝑆𝑆,𝐿𝐶 (𝐱𝑘) + 𝐯𝐿𝐶
𝑘
, (6)

where 𝐳
𝐺𝑁𝑆𝑆,𝐿𝐶
𝑘

are the position measurements in the
ECEF frame estimated by the GNSS receiver, and can be
expressed as

𝐳
𝐺𝑁𝑆𝑆,𝐿𝐶
𝑘

=
(
𝑥𝐺𝑁𝑆𝑆
𝑘

, 𝑦𝐺𝑁𝑆𝑆
𝑘

, 𝑧𝐺𝑁𝑆𝑆
𝑘

)𝑇
. (7)

Note that 𝐳𝐺𝑁𝑆𝑆,𝐿𝐶
𝑘

is calculated using the weighted least
squares method (Groves, 2013), based on the pseudorange
code measurements obtained from the GNSS receiver. The
observation function ℎ𝐺𝑁𝑆𝑆,𝐿𝐶(*) shows the relationship
between the observation and the state at the kth epoch:

ℎ𝐺𝑁𝑆𝑆,𝐿𝐶 (𝐱𝑘) =

⎡⎢⎢⎢⎢⎢⎣
𝑥
𝑒𝑐𝑒𝑓

𝑘,𝑟

𝑦
𝑒𝑐𝑒𝑓

𝑘,𝑟

𝑧
𝑒𝑐𝑒𝑓

𝑘,𝑟

⎤⎥⎥⎥⎥⎥⎦
, (8)
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where 𝐯𝐿𝐶
𝑘

is the Gaussian noise associated with the mea-
surements, which is described with a covariance matrix
equaling 𝐑𝑘. To calculate 𝐑𝑘, we follow the method used
in Maier and Kleiner (2010), as follows:

𝐑𝑘

=
(
ℎ𝑝𝑑𝑜𝑝 ⋅ 𝑠𝑈𝐸𝑅𝐸

)2
𝐈3𝑥3

=

⎡⎢⎢⎢⎢⎣

(
ℎ𝑝𝑑𝑜𝑝 ⋅ 𝑠𝑈𝐸𝑅𝐸

)2
0 0

0
(
ℎ𝑝𝑑𝑜𝑝 ⋅ 𝑠𝑈𝐸𝑅𝐸

)2
0

0 0
(
ℎ𝑝𝑑𝑜𝑝 ⋅ 𝑠𝑈𝐸𝑅𝐸

)2
⎤⎥⎥⎥⎥⎦
,

(9)

where 𝑠𝑈𝐸𝑅𝐸 represents the user-equivalent range error
(Maier & Kleiner, 2010), which we set as 10 m; ℎ𝑝𝑑𝑜𝑝
denotes the position dilution of precision (Groves, 2013),
which is calculated based on theGNSSmeasurements; and
𝐈 is a 3 × 3 identity matrix.

3.2 TC GNSS-INS integration using the
EKF

The main difference between LC and TC integrations lies
in the domain of the GNSS observations that are applied.
TC integration uses rawGNSS pseudorange, while LC uses
position measurements. The state-space of the system (𝐱𝑘)
is represented as

𝐱𝑘 =
(
𝐗
𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝐕

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝐁

𝑏𝑜𝑑𝑦

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)𝑇
. (10)

The state is similar to that used in LC integration, except
that in TC integration the receiver clock bias 𝛅𝑐𝑙𝑜𝑐𝑘

𝑘,𝑟
must

also be estimated. The measurements obtained from the
INS and dynamic models are identical to those obtained in
the LC integration. Themeasurementmodel of EKF-based
TC GNSS-INS integration can be expressed as

𝐳
𝐺𝑁𝑆𝑆,𝑇𝐶
𝑘

= ℎ𝐺𝑁𝑆𝑆,𝑇𝐶 (𝐱𝑘) + 𝐯𝑇𝐶
𝑘

(11)

where 𝐳𝐺𝑁𝑆𝑆,𝑇𝐶
𝑘

indicates the GNSS pseudorangemeasure-
ments (N satellites in total) performed in the ECEF frame
using the GNSS receiver, and can be represented as

𝐳
𝐺𝑁𝑆𝑆,𝑇𝐶
𝑘

=
(
𝜌𝐺𝑁𝑆𝑆
𝑘,1

, 𝜌𝐺𝑁𝑆𝑆
𝑘,2

, … , 𝜌𝐺𝑁𝑆𝑆
𝑘,𝑖

, … , 𝜌𝐺𝑁𝑆𝑆
𝑘,𝑁

)𝑇
. (12)

The variable ℎ𝐺𝑁𝑆𝑆,𝐿𝐶(*) is an observation function that
depicts the relationship between the observation and the
state at the k-th time instant, 𝜌𝐺𝑁𝑆𝑆

𝑘,𝑖
represents the ith pseu-

dorangemeasurement at epoch k,N denotes the total num-
ber of satellites at epoch k, and 𝐯𝑇𝐶

𝑘
is the Gaussian noise

associated with the measurements. The position of a satel-
lite 𝐒𝐕𝑘,𝑖 is represented as 𝐒𝐕𝑘,𝑖 = (𝑥

𝑒𝑐𝑒𝑓

𝑆𝑉
, 𝑦

𝑒𝑐𝑒𝑓

𝑆𝑉
, 𝑧

𝑒𝑐𝑒𝑓

𝑆𝑉
)𝑇 .

Therefore, the predicted GNSS pseudorange measurement
for satellite 𝐒𝐕𝑘,𝑖 is obtained as

ℎ𝑝
(
𝐒𝐕𝑘,𝑖, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)
=
||||||𝐒𝐕𝑘,𝑖 − 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟

|||||| + 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

. (13)

The ionospheric and tropospheric errors are modeled
based on (Herrera et al., 2016), and removed from the pseu-
dorangemeasurements before its integration with the INS.
Therefore, the observation function ℎ𝐺𝑁𝑆𝑆,𝑇𝐶(*) is formu-
lated as follows:

ℎ𝐺𝑁𝑆𝑆,𝑇𝐶 (∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝑝
(
𝐒𝐕𝑘,1, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)
ℎ𝑝

(
𝐒𝐕𝑘,2, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)
…

ℎ𝑝
(
𝐒𝐕𝑘,𝑖, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)
…

ℎ𝑝
(
𝐒𝐕𝑘,𝑁, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

To determine the covariancematrix of𝐑𝑘 corresponding
to themeasurement vector 𝐳𝐺𝑁𝑆𝑆,𝑇𝐶

𝑘
, we follow themethod

proposed in Herrera et al. (2016). Here, each pseudorange
measurement is expressed with a different uncertainty,
based on its signal-to-noise ratio (SNR) and satellite ele-
vation angle. Given a satellite with the SNR and elevation
angle indicated as 𝑆𝑁𝑅𝑖 and 𝑒𝑙𝑖 , respectively, its weighting
can be calculated as follows (Herrera et al., 2016):

𝑊𝑖 (𝑒𝑙𝑖, 𝑆𝑁𝑅𝑖)

=
1

𝑠𝑖𝑛2𝑒𝑙𝑖

×

(
10

−
(𝑆𝑁𝑅𝑖−𝑇)

𝑎

((
𝐴

10
−
(𝐹−𝑇)

𝑎

− 1

)
(𝑆𝑁𝑅𝑖 − 𝑇)

𝐹 − 𝑇
+ 1

))
,

(15)

where T indicates the SNR threshold, and the parameters
a, A, and F are selected based on (Herrera et al., 2016).
Therefore, the covariance matrix 𝐑𝑘 is a diagonal matrix
constituted by the weighting 𝜎𝑖2:

𝐑𝑘 =

⎡⎢⎢⎢⎣
𝜎1

2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝜎𝑁
2

⎤⎥⎥⎥⎦ (16)
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320 WEN et al.

with 𝜎𝑖2 = 1∕𝑊𝑖(𝑒𝑙𝑖, 𝑆𝑁𝑅𝑖).
The subscript N indicates the number of satellites and

the matrix 𝐑𝑘 is an 𝑁 ×𝑁 matrix.

3.3 LC GNSS-INS integration using FGO

In general, multisensor integration aims to determine
the optimal posterior state, based on sensor measure-
ments. Therefore, the sensor integration problem can be
formulated as a typical MAP problem (Barfoot, 2017). In
this study, the measurements are performed in two parts,
namely GNSS measurements and INS measurements.
Assuming that these measurements are independent of
each other, GNSS-INS integration can be formulated as
the following MAP problem:

𝐱̂ = argmax
∏
𝑘,𝑖

𝑃(𝐳𝑘,𝑖|𝐱𝑘)∏
𝑘

𝑃(𝐱𝑘|𝐱𝑘−1, 𝐮𝑘), (17)

where 𝐳𝑘,𝑖 represents the GNSS raw measurements per-
formed at epoch k, 𝐱𝑘 represents the system state at
k, i denotes the index of the measurements performed
at k (e.g., one epoch may have multiple pseudorange
measurements), 𝐮𝑘 denotes the control input (e.g., INS
measurements), and 𝐱̂ is the optimal system state set
(Barfoot, 2017). The Bayes filter-based sensor fusion
method recursively estimates the current epoch based
on 1. the previous state, and 2. the control input and
observationmeasurements at the current epoch. However,
it fails to take full advantage of the historical information.
Consequently, FGO-based sensor integration (Indelman
et al., 2012) is applied to transform the MAP problem into
a nonlinear optimization problem.
In FGO-based integration, all sensor measurements are

treated as factors (𝜁𝑗) associated with specific states (𝐱𝑗).
According to (Indelman et al., 2012), theMAP problem can
be expressed as

𝐗̂ = arg max
𝐗

(∏
𝑗

𝜁𝑗
(
𝐱𝑗
))

(18)

with 𝜁𝑗(𝐱𝑗) ∝ exp
(
−||ℎ𝑗(𝐱𝑗) − 𝐳𝑗||2𝚺𝑗) ,

where 𝜁𝑗(𝐱𝑗) is a factor associated with a given measure-
ment 𝐳𝑗 , which can be derived from both GNSS and INS
measurements; 𝐱𝑗 is the state associated with the given
measurements 𝐳𝑗; ℎ𝑗(∗) is the observation function associ-
ated with 𝐳𝑗; and the set 𝐗 = {𝐱1, 𝐱2, 𝐱3, … , 𝐱𝑘, …} denotes
the states that must be estimated. Assuming that all of
the sensor noise fits a Gaussian distribution, the negative
logarithm of 𝜁𝑗(𝐱𝑗) is proportional to the error function

(Indelman et al., 2012) associated with the measurements.
Therefore, Equation (18) can be transformed as follows:

𝐗̂ = arg min
𝐗

(∑
𝑗

||||||ℎ𝑗 (𝐱𝑗) − 𝐳𝑗
||||||2𝚺𝑗

)
. (19)

Thus, FGO transforms Equation (17) into a standard
nonlinear least-squares problem, expressed as Equation
(19), and obtains the optimal state set𝐗 by minimizing the
derived error function.
Figure 2 shows the graph structure of LC GNSS-INS

integration using FGO, and the state space of the system is
represented as Equation (1). The graph includes all histor-
ical observation measurements and shows a major differ-
ence between the conventional Kalman filter-based (Wan
et al., 2018) and factor graph-based sensor integrations.
The error functions of each listed factor are presented as
follows.

3.3.1 Motion model factor

We use a constant-velocity model to constrain the two con-
secutive states. Based on this model, themotionmodel can
be expressed as

𝐱𝑘 = ℎ𝑀𝑀 (𝐱𝑘−1) + N
(
0, 𝚺𝑀𝑀

𝑘

)
, (20)

where 𝐱𝑘 denotes the state at the given epoch 𝑘 and
ℎ𝑀𝑀(∗) represents the motion model function, and can be
expressed as follows:

ℎ𝑀𝑀 (𝐱𝑘−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑥
⋅ Δ𝑡

𝑦
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑦
⋅ Δ𝑡

𝑧
𝑒𝑐𝑒𝑓

𝑘−1,𝑟
+ 𝑣

𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑧
⋅ Δ𝑡

𝐁
𝑏𝑜𝑑𝑦

𝑘−1,𝑟

𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

The variable 𝚺𝑀𝑀
𝑘

is a covariancematrix associated with
the motion model. This covariance matrix is constant and
is formulated based on the specifications of the applied INS
in this paper as follows:

𝚺𝑀𝑀
𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.32 0 0 0 0 0

0 0.32 0 0 0 0

0 0 0.32 0 0 0

0 0 0 0.012 0 0

0 0 0 0 0.012 0

0 0 0 0 0 0.012

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

The units for the covariance matrix parts of 𝐗𝑒𝑐𝑒𝑓
𝑘,𝑟

and 𝐁
𝑏𝑜𝑑𝑦

𝑘,𝑟
are m and 𝑚∕𝑠2, respectively. Therefore, the
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WEN et al. 321

F IGURE 2 Illustration of the graph
structure of the implemented loosely coupled
and tightly coupled Global Navigation
Satellite System–inertial navigation system
integrations using factor graph optimization
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]

error function (𝐞𝑀𝑀
𝑘

) of the motion model factor can be
expressed as||||||𝐞𝑀𝑀

𝑘

||||||2𝚺𝑀𝑀
𝑘

= ||||𝐱𝑘 − ℎ𝑀𝑀 (𝐱𝑘−1)||||2𝚺𝑀𝑀
𝑘

(23)

3.3.2 INS factor

In LC FGO, an INS provides linear accelerations that
directly correlate with velocities between two epochs. The
acceleration measurements performed in the global frame
are denoted as𝐀𝑒𝑐𝑒𝑓

𝑘
(𝐮𝑘), based on Equation (3). Themea-

surement model for linear acceleration is expressed as

𝐱𝑘 = ℎ𝐼𝑁𝑆
(
𝐱𝑘−1, 𝐀

𝑒𝑐𝑒𝑓

𝑘

)
+ N

(
0, 𝚺𝐼𝑁𝑆

𝑘

)
, (24)

where the measurement function ℎ𝐼𝑁𝑆(𝐱𝑘−1, 𝐮𝑘) is
expressed as

ℎ𝐼𝑁𝑆
(
𝐱𝑘−1, 𝐀

𝑒𝑐𝑒𝑓

𝑘

)
=

⎡⎢⎢⎢⎢⎢⎣

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑥
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑥
⋅ Δ𝑡

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑦
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑦
⋅ Δ𝑡

𝑣
𝑒𝑐𝑒𝑓

𝑘−1,𝑟,𝑧
+ 𝑎

𝑒𝑐𝑒𝑓

𝑘,𝑧
⋅ Δ𝑡

⎤⎥⎥⎥⎥⎥⎦
. (25)

Here, the covariance matrix for the INS factor is
expressed as 𝚺𝐼𝑁𝑆

𝑘,𝑎𝑐𝑐
. Therefore, the error function for INS

acceleration measurements can be formulated as

||||||𝐞𝐼𝑁𝑆𝑘

||||||2𝚺𝐼𝑁𝑆
𝑘

=
||||||||𝐱𝑘 − ℎ𝐼𝑁𝑆

(
𝐱𝑘−1, 𝐀

𝑒𝑐𝑒𝑓

𝑘

)||||||||
2

𝚺𝐼𝑁𝑆
𝑘

, (26)

where 𝚺𝐼𝑁𝑆
𝑘

is a constant based on the INS specifications
applied in this paper, as is defined as

𝚺𝐼𝑁𝑆
𝑘

=

⎡⎢⎢⎢⎣
0.152 0 0

0 0.152 0

0 0 0.152

⎤⎥⎥⎥⎦ . (27)

The unit for the covariance matrix is𝑚∕𝑠.

3.3.3 GNSS factor

The error function for a given GNSS measurement for LC
FGO is obtained as follows:

||||||𝐞𝐺𝑁𝑆𝑆𝑘

||||||2𝚺𝐺𝑁𝑆𝑆
𝑘

=
||||||||𝐳𝐺𝑁𝑆𝑆𝑘

− ℎ𝐺𝑁𝑆𝑆,𝐿𝐶
(
𝐗
𝑒𝑐𝑒𝑓

𝑘,𝑟

)||||||||
2

𝚺𝐺𝑁𝑆𝑆
𝑘

(28)
where 𝚺𝐺𝑁𝑆𝑆

𝑘
denotes the covariance matrix, which is cal-

culated using Equation (9).

3.4 TC GNSS-INS integration using FGO

Figure 2 shows the graph structure of TC GNSS-INS inte-
gration using FGO, and the state space of the system is
represented as Equation (10). The motion and INS factors
remain the same as those used for LC FGO.

3.4.1 GNSS pseudorange factor

The GNSS receiver receives signals frommultiple satellites
at a given epoch k, which is expressed as

𝐒𝐕𝑘 =
{
𝐒𝐕𝑘,1, 𝐒𝐕𝑘,2, … , 𝐒𝐕𝑘,𝑖, … 𝐒𝐕𝑘,𝑁

}
. (29)

Therefore, we obtain the error function for a given satel-
lite measurement 𝜌𝑆𝑉,𝑖 as follows:

||||||𝐞𝑃𝑘,𝑖||||||2𝚺𝑆𝑉
𝑘,𝑖

=
||||||||𝜌𝑆𝑉,𝑖 − ℎ𝐺𝑁𝑆𝑆,𝑇𝐶

(
𝐒𝐕𝑘,𝑖, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

)||||||||
2

𝚺𝑆𝑉
𝑘,𝑖

,

(30)
where 𝚺𝑆𝑉

𝑘,𝑖
denotes the covariance matrix, which is calcu-

lated using Equation (16).
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322 WEN et al.

F IGURE 3 The left image shows the experimental vehicle and sensor setup, and the right image illustrates the tested urban canyon in
Hong Kong [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

3.5 LC GNSS-INS integration using FGO

We formulate three types of factors for use in LC
GNSS-INS integration with FGO: motion model, INS,
and GNSS factors. Therefore, the optimal state set 𝐗 =

{𝐱1, 𝐱2, 𝐱3, … , 𝐱𝑘, …} is solved as follows:

𝐗∗ = argmin
∑
𝑘

||||||𝐞𝐺𝑁𝑆𝑆𝑘

||||||2𝚺𝐺𝑁𝑆𝑆
𝑘

+
||||||𝐞𝑀𝑀

𝑘

||||||2𝚺𝑀𝑀
𝑘

+
||||||𝐞𝐼𝑁𝑆𝑘

||||||2𝚺𝐼𝑁𝑆
𝑘

. (31)

We also formulate three types of factors for use in TC
GNSS-INS integration with FGO: motion model, INS, and
pseudorange factors. Therefore, the optimal state set 𝐗 =

{𝐱1, 𝐱2, 𝐱3, … , 𝐱𝑘, …} is solved as follows:

𝑋∗ = argmin
∑
𝑖,𝑘

||||||𝐞𝑃𝑘,𝑖||||||2𝚺𝑆𝑉
𝑘,𝑖

+
||||||𝐞𝑀𝑀

𝑘

||||||2𝚺𝑀𝑀
𝑘

+
||||||𝐞𝐼𝑁𝑆𝑘

||||||2𝚺𝐼𝑁𝑆
𝑘

.

(32)
During the optimization, the Levenberg-Marquardt

method is used to solve Equations (31) and (32).

4 EXPERIMENT EVALUATION

4.1 Experiment setup

To evaluate the performance of the four abovementioned
integration schemes, we conducted experiments in an
urban canyon inHongKong. The experimental vehicle and
test scene are shown in Figure 3. The image on the left
of Figure 3 shows the experimental vehicle, in which all

TABLE 1 Parameter values used in this paper

Parameter 𝑭 𝑻 A
Value 10 45 30
Parameter 𝑠𝑈𝐸𝑅𝐸 (m) 𝜎𝑎𝑐𝑐_𝑛

( 𝑟𝑎𝑑
𝑠2

√
𝐻𝑧)

𝜎𝑎𝑐𝑐_𝑤

( 𝑟𝑎𝑑
𝑠2

√
𝐻𝑧)

Value 10 8.17e-3 1.31e-4

sensors were installed in a compact sensor kit. The image
on the right of Figure 3 shows the tested urban canyon in
Hong Kong, which contained tall buildings, a challenging
scenario for GNSS positioning.
During the test, a low-cost u-blox M8T GNSS receiver

was used to collect raw single-frequency global positioning
system (GPS) and BeiDou measurement data at a fre-
quency of 1 Hz. The Xsens Ti-10 IMU was used to collect
data at a frequency of 100 Hz, and a fisheye camera was
used to capture a sky-view image to show the environmen-
tal conditions, for reference only. In addition, the NovAtel
SPAN-CPT, which is a GNSS real-time kinematic-INS
(fiber-optic gyroscope) integrated navigation system, was
used to obtain the ground truth. The gyro-bias in-run
stability of the FGO was 1◦/h and its random walk was
0.067◦/h. The baseline between the vehicle and the
GNSS base-station was approximately 7 km. Besides, a
positioning accuracy of approximately 10 cm was obtained
using SPAN-CPT in the evaluated scene. All data were col-
lected and synchronized using a robotic operating system
(Quigley et al., 2009). Before conducting the experiments,
the coordinate systems between all sensors were cali-
brated. We ran the EKF and FGO on a high-performance
desktop computer equipped with an Intel i7-9700K at 4.20
GHz and 64GB RAM, in a postprocessing manner. The
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WEN et al. 323

TABLE 2 Positioning performance and computational load (time) of the four methods

All data
Loosely
coupled EKF

Tightly
coupled EKF

Loosely coupled
FGO

Tightly coupled
FGO

Mean error 9.14 m 8.03 m 7.01 m 3.64 m
Std 7.60 m 7.15 m 6.41 m 2.84 m
Used Time 0.053 s 0.071 s 15.41 s 75.30 s

F IGURE 4 Trajectories of the LC GNSS/INS integrations using EKF and FGO in the east, north, and up (ENU) frame. The black curve
denotes the reference trajectory. The red and blue curves in the left-hand side figure represent the trajectories from LC integrations using EKF
and FGO, respectively. The right figure shows the 2D error [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

INS specifications that were applied are listed in Table 1.
Because the choice of covariance parameters is known to
substantially affect GNSS-INS accuracy, we used the same
parameters for the EKF and FGO based on Equations
(9) and (16), respectively. We focused on analyzing the
differences between the EKF and FGO. The estimated
state was in the ECEF (Groves, 2013). We transformed
the positioning results obtained from ECEF into an ENU
frame (Groves, 2013). As the orientation was directly
obtained from the AHRS, only the two-dimensional (2D)
positioning (north and east directions) accuracy was
evaluated.

4.2 Comparison of positioning accuracy

The positioning performances of the integrations con-
ducted in the tested urban canyon are shown in Table 2,
where 9.14 m of 2D mean error was obtained using LC
EKF with a standard deviation of 7.60 m. The mean error
decreased to 8.03 m when the TC EKF method was used.
Moreover, the time efficiencies of LC and TC EKF were
found to be similar, with less than 0.1 s required to process
all data. After applying LC FGO for GNSS-INS integration,
the 2D error decreased to 7.01 m with a standard deviation
of 6.41 m, which was better than the value obtained for
TC EKF. Moreover, the standard deviation decreased from
7.15 to 6.41 m. However, 15.41 s were required to process

all data. Notably, the 2D mean error decreased to 3.64
m when TC FGO was used. The standard deviation also
decreased dramatically, from 6.41 to 2.84 m, compared to
when LC FGOwas used. However, the computational time
increased substantially (to 75.30 s), due to the increased
number of factors in TC FGO compared to LC FGO. In
summary, the optimal performance was obtained using
TC FGO. As all historical data were considered in FGO,
this led to a greater computational load.
The trajectories and positioning errors of the two LC and

two TC integrations generated during the test are shown
in Figures 4 and 5, respectively. The right side of Figure 4
shows that the mean error of LC FGO is slightly less in
most epochs compared to that of LC EKF. However, the
mean error is substantially less when TC FGO is used, as
shown on the right side of Figure 5.
The residual term evaluates the difference between the

measurements and final state estimation. If all applied
measurements and their associated error model are cor-
rect, the residual should be zero. However, the residuals
are usually nonzero, due to the noise generated by sig-
nal blockage or reflection, leading to NLOS reception in
the GNSS pseudorange measurements. Both the EKF- and
FGO-based methods aim to minimize the residuals of all
considered measurements based on the associated covari-
ance matrix. Smaller residuals usually indicate that the
estimated state is closer to its optimal estimation. Thus,
the value of a residual is a good indicator of the quality
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324 WEN et al.

F IGURE 5 Trajectories of TC GNSS/INS integrations using EKF and FGO in the east, north, and up (ENU) frame. The black curve
denotes the reference trajectory. The red and blue curves in the left-hand side figure represent the trajectories from TC integrations using EKF
and FGO, respectively. The right figure shows the 2D error [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

F IGURE 6 2D residuals of the loosely coupled GNSS/INS
integrations using EKF and FGO [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

of GNSS-INS integration. Therefore, we also present the
residual results of the four integrations used in this study.
The residuals of the LC andTC integrations are shown in

Figures 6 and 7, respectively. In LC integration, the obser-
vation is the measurement of GNSS positioning solutions.
We calculate the L2 norm of the residual (𝑝𝑟,𝐿𝐶), which
denotes the difference between the GNSS positioningmea-
surements and the final GNSS-INS integration result, as
follows:

𝑝𝑟,𝐿𝐶 =
||||||||(𝐳𝐺𝑁𝑆𝑆,𝐿𝐶𝑘

)
𝑥𝑦
−
(
ℎ𝐺𝑁𝑆𝑆,𝐿𝐶 (𝐱𝑘

∗)
)
𝑥𝑦

||||||||2 (33)

where 𝑝𝑟,𝐿𝐶 denotes the GNSS residual in LC integration
and the operator ()𝑥𝑦 is used to obtain the 2Dpart (horizon-
tal positioning). Thus,we evaluate 2D residuals for LC inte-
gration. Therefore, the 2D positioning error (right side of
Figure 4) and residual (Figure 6) are the same metrics and
may be compared,where larger residuals usually indicate a
larger potential positioning error. The variable 𝐱𝑘∗ denotes
the estimated state at a given epoch k. Figure 6 shows that,

F IGURE 7 2D residuals of the tightly coupled GNSS/INS
integrations using EKF and FGO [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

throughout the test, the FGO-based method has a similar
or smaller residual than the EKF-based integration.
Figure 7 shows the residual of the pseudorange mea-

surements. To simplify the comparison of the pseudorange
residual and mean positioning error of GNSS-INS integra-
tion, we calculate the mean of the L1 norm of the pseudo-
range residual in TC integration, as follows:

𝜌𝑟,𝑇𝐶

= 1∕𝑁

𝑁∑
𝑖 = 1

||||||||(𝜌𝐺𝑁𝑆𝑆𝑘,𝑖
− ℎ𝐺𝑁𝑆𝑆,𝑇𝐶

(
𝐒𝐕𝑘,𝑖, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

))||||||||1
(34)

where 𝜌𝑟,𝑇𝐶 denotes the GNSS residual in TC integration
at a given epoch k. As shown in the figure, the FGO-
based method yields a much smaller residual. Note that
the residual for TC integration lies in the GNSS pseudo-
range domain. A small residual indicates that the final
positioning result is closer to the given measurement. The
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WEN et al. 325

F IGURE 8 2D positioning errors under different window sizes used in TC GNSS/INS integrations using FGO. The x-axis denotes the
epochs, and the y-axis represents the value of 2D positioning errors. The red and green rectangles denote the sliding windows of sizes 30 and
256 s, respectively [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

figure also shows that the TC FGO residual is substan-
tially smoother than the TC EKF residual. In sum, FGO-
based GNSS-INS integration exhibits better accuracy than
EKF-based integration. Moreover, FGO-based TC integra-
tion exhibits the best performance of the four listed inte-
grations.

4.3 Analysis of improvement in FGO vs.
window size

According to (Dellaert & Kaess, 2017), a major difference
between the EKF and FGO approaches is the number
of “iterations” applied. The EKF estimator only iterates
once based on the given observation measurements,
whereas FGO involves several iterations, which consider
all historical and current measurements simultaneously,
to approach the optimal state. If the window size of the
optimization is set to 1 s [K = 1 in (32)], which means that
FGO-based TC integration only considers the measure-
ments at the current and last epochs, the major difference
between the FGO and EKF approaches lies in the number
of iterations applied during GNSS-INS integration. The
window size denotes the epoch of historical states consid-
ered in FGO. We refer to the FGO with a window size of
1 s as the “EKF-like estimator.” Note that this estimator
differs from the EKF, which recursively maintains the
historical information present in the covariance matrix.
Figure 8 shows the 2D positioning error of TC GNSS-INS
integration obtained using FGO under different window
sizes. The 2Dmean positioning error is 5.18 m (black curve
in Figure 8) with a window size of 1 s, which is better than
that obtained from EKF-based TC integration (8.03 m).

This reduction in the mean positioning error is largely due
to the number of iterations used in the “EKF-like estima-
tor” compared to the number used in the EKF, which is
a key difference between these two approaches. The other
key difference between the EKF and FGO approaches is
that more historical data are considered simultaneously
during FGO. To analyze the effects of window size on the
performance of FGO-based GNSS-INS integration, the
positioning results obtained using different window sizes
are also shown in Figure 8. Note that a window size of 256 s
equals the batch optimization, which considers all histor-
ical information in FGO. With a window size of 1 s, there
is a limited improvement in the FGO. With the increased
window sizes (5, 10, 30, and 256 s),more historical informa-
tion is considered during the optimization, and the overall
FGO performance gradually improves. Besides, the error
curve (blue) arising from batch optimization (window size
of 256 s) is substantially smoother than the other curves.
Overall, it can be seen that the use of more historical data
tends to increase resilience to outliers in GNSS measure-
ments, such as NLOS receptions and multipath effects.
We find that when the window size is approximately 30 s,
the accuracy (3.74 m) is close to that (3.65 m) obtained for
batch optimization (window size is 256 s).
The improvements obtained from FGO-based GNSS-

INS integration can be summarized as follows.

1. Multiple iterations: As FGO is a process of determin-
ing the optimal estimation based on the gradient (Del-
laert & Kaess, 2017), multiple iterations help to esti-
mate the optimal state. Thus, these iterations relax the
requirement for the accuracy of the initial guess of
the estimators. In addition, linearization is conducted
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326 WEN et al.

F IGURE 9 Sky-view and satellite visibilities of the four selected epochs in Figure 8. The blue and red circles denote the line-of-sight
(LOS) and non-line-of-sight (NLOS) satellites, respectively [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

in each FGO iteration, which helps to linearize the
nonlinear observation model. However, the nonlinear-
ity of the model is trivial for TC GNSS-INS integration:
The line-of-sight (LOS) connecting the GNSS receiver
and satellite is accurate, even when the initial guess
has an error of 100 m. This has also been mentioned in
(Zhao et al, 2014).

2. Time correlation: FGO effectively considers histori-
cal information, all of which are connected by the INS
factor. Thus, the time correlation between the histori-
cal epochs is simultaneously explored and used to resist
the outliers. Thus, an appropriate FGO window size
improves the performance. The same finding has also
been discussed in (Zhao et al., 2016).

4.4 Case study on the relationship
between the measurement uncertainty and
the selection of window size for FGO

As shown in Figure 8, the error (blue curve) of batch opti-
mization at epoch D is larger than those resulting from
smaller window sizes (e.g., 20 s, 10 s, and 5 s). This means
that in some epochs a larger window size does not nec-

essarily lead to better FGO performance. Figure 9 shows
the sky-view images captured by a fisheye camera and the
satellite visibilities for the four selected epochs (A, B, C,
and D) in Figure 8. The blue and red circles denote the
LOS and NLOS satellites, respectively, which are classified
according to our previous study (Wen, Bai, et al., 2019).
The errors peak at epochs A, C, and D due to the severe
NLOS receptions (see red circles). The period near epoch
B introduces a similar positioning error (3–6 m) under dif-
ferent window sizes. The actual sensor noise (error mag-
nitude) model near epoch B is substantially different from
that near epoch D. Thus, the historical measurements fail
to reflect the measurement noise at the current epoch D.
A larger window size (see blue curve in Figure 8) in FGO
leads to a worse result at epoch D.
If the error model and relative weightings [correspond-

ing to Equations (9), (15), and (16)] of the pseudorange
measurements are provided, the use of more historical
data should improve the accuracy of GNSS-INS integra-
tion. However, if the error modeling is incorrect, the time
correlation will not be accurate, and a larger window
size will lead to only limited improvements or even
worse accuracy (epoch D in Figure 8). Thus, the limited
improvements obtained under the increased window size
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WEN et al. 327

F IGURE 10 Histogram of GPS (left) and BeiDou (right) pseudorange errors and the corresponding fitted Gaussian mixture model
(GMM) inside a sliding window of epoch D with a size of 30 s (as indicated by the red rectangle in Figure 8). The x-axis denotes the value of
pseudorange errors acquired by the ray-tracing technique. The y-axis denotes the counts of errors within the histogram. The blue curve
represents the GMM fitted by the histogram using three Gaussian components [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com and www.ion.org]

(from 30 to 256 s) are partially caused by the imperfect
weightings (modeling of noise covariance). Both EKF- and
FGO-based GNSS-INS integrations rely on the assumption
that the sensor noise can be fitted by a Gaussian model.
However, this assumption is usually violated due to the
satellite signal reflection and blockage caused by build-
ings. This is a major factor limiting the performance of
GNSS-INS integration in urban canyons. Instead of using
Gaussian distribution, a team from the Chemnitz Univer-
sity of Technology (Pfeifer & Protzel, 2019a) recently has
proposed the use of GMM for modeling the pseudorange
measurement noise. They found that if the residuals of
all measurements performed inside a window effectively
model the error distribution of the measurements at the
current epoch, FGO can be substantially improved based
on the GMM estimated using the historical pseudorange
residuals. The authors (Pfeifer & Protzel, 2019a) argued
that the noise of pseudorange measurements in urban
canyons does not have a Gaussian distribution. Inspired by
their work, we show the pseudorange error and residual
distributions near epoch D under different window sizes.
Figure 10 shows the measured GPS/BeiDou pseudor-

ange errors, which are labeled based on the ground-truth
trajectory and three-dimensional building modeling using
the double-difference technique (Xu et al., 2019). Thus,
the figure shows the true error distribution of the pseu-
dorange measurement. Note that the pseudorange errors
are within a 30-s window of epoch D, as indicated by the
red rectangle in Figure 8. According to our fitting analysis,
three Gaussian components are sufficient to fit the his-
tograms of Figure 10 with three major peaks. This agrees
with the finding presented in Pfeifer & Protzel (2018), in
which three Gaussian components were usually enough
to model the pseudorange error distribution in urban

canyons. The histogram exhibits a long tail on the right
side, which is largely due to NLOS receptions caused by
building reflections. This is one of themain reasons for the
non-Gaussian property of pseudorange measurements. A
similar long-tailed phenomenon is also witnessed in the
BeiDou pseudorange errors on the right side of Figure 10.
We use a GMM with three Gaussian components, which
is shown by blue curves in the figure, to quantitatively fit
the GPS/BeiDou error distributions. The mean, standard
deviation, and weighting of each Gaussian component
are also shown in the figure. The first component of the
GMM, for GPS pseudorange measurements with a mean
of 38.76 m, represents the NLOS signals, which generate
the long-tail phenomenon. The first component of GMM,
for BeiDou pseudorange measurements with a mean of
32.62 m, also represents the NLOS signals. In sum, the
numerous NLOS receptions lead to a pronounced long-tail
phenomenon in the error distribution.
Similar to Figure 10, Figure 11 also shows the residuals of

GPS/BeiDou pseudorange measurements, which are cal-
culated as follows:

𝜌𝑟,𝑇𝐶 =
(
𝜌𝐺𝑁𝑆𝑆
𝑘,𝑖

− ℎ𝐺𝑁𝑆𝑆,𝑇𝐶
(
𝐒𝐕𝑘,𝑖, 𝐗

𝑒𝑐𝑒𝑓

𝑘,𝑟
, 𝛅𝑐𝑙𝑜𝑐𝑘
𝑘,𝑟

))
,

(35)
where the actual values (positive and negative) are used.
Similar histograms and GMM parameters (see the table
inside Figure 11) may be obtained using the pseudorange
residuals. This means that the fitted GMM in Figure 11
comprising the pseudorange residuals inside a 30 s sliding
window effectively represents the actual error distribution
(the GMM shown in Figure 10). As Figure 8 shows, a
window size of 30 s leads to similar accuracy to that
obtained from the batch optimization. This means that the
historical measurements performed within the 30-s win-
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328 WEN et al.

F IGURE 11 Histogram and Gaussian
mixture models (GMMs) of pseudorange
residuals near epoch D with a sliding window
of 30 s. These are similar to Figure 10, with
the major difference being that the histogram
and GMMs are based on the residuals [Color
figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com
and www.ion.org]

F IGURE 1 2 Histogram and Gaussian
mixture models (GMMs) of pseudorange
residuals similar to Figure 11, with the major
difference being that the histogram and
GMMs are based on the residuals near epoch
D with a sliding window of 256 s [Color figure
can be viewed in the online issue, which is
available at wileyonlinelibrary.com and
www.ion.org]

dow describe the error distribution of the measurement
noise near epoch D. Figure 12 shows the distributions
of the residuals with substantially larger window size
(256 s) than that in Figure 10. The left figure shows that
the GPS residuals introduce a long-tail phenomenon,
with the maximum pseudorange residual reaching 100
m, which is substantially different from that observed in
Figure 11. Thus, the Gaussian component with a mean of
36.58 m introduces a large standard deviation of 1,100.6
m. The mean values (10.07 m) of the GMM for the BeiDou
pseudorange measurements are substantially less than
the 32.62 m value shown on the right side of Figure 10.
In sum, the residuals obtained within the window size
of 256 s at epoch D cannot effectively describe the actual
noise at this epoch (Figure 10). Thus, this is a significant
factor that defines the optimal window size in FGO.

4.5 Discussion on the computational
load of FGO

Another problem faced in FGO applications is the
increased computational load compared to that generated
by the use of the EKF estimator. Tomaintain real-time per-
formance, a sliding window may be used, with only the
measurements within this sliding window being consid-
ered for FGO. However, this technique does not use all of
the historical data. To address this issue, the incremental
smoothing and mapping (iSAM) algorithm (Kaess et al.,
2008) has been proposed and is built on top of the fac-
tor graph. A key advantage of iSAM is that it guarantees

a low computational load even when large amounts of
data are used in the optimization. This is achieved by stor-
ing the connections between the historical data in a novel
Bayes tree structure. This means that iSAM does not need
to recalculate the Jacobians for the states that are unaf-
fected by the newly performed measurements. Figure 13
shows a time comparison of the two TCGNSS-INS integra-
tions solved by FGO and by iSAM. The computational time

F IGURE 13 Comparison of the computational time used in
tightly coupled (TC) integration using factor graph optimization
(FGO) and the TC incremental smoothing and mapping algorithm
(iSAM) (Kaess et al., 2008) [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and
www.ion.org]
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WEN et al. 329

used by FGO increases dramatically when more historical
data are used, with 75.30 s required to process all of the
data. However, iSAM has a substantially lower computa-
tional load when incorporating more historical data, with
only 15.41 s required to process all the data. Meanwhile,
the slope of the curve shown in Figure 13 is almost con-
stant during theGNSS-INS integration. Thus, although the
amount of historical data increases, the time used to pro-
cess each epoch remains almost constant. Moreover, the
positioning performances of both methods are almost the
same. Thus, we believe that iSAM is a suitable alternative
for solving FGO-based sensor fusion in real-time.

5 CONCLUSIONS AND FUTURE
WORK

This paper comprehensively compares the performance
of four GNSS-INS integrations using both the EKF and
FGO, using a real dataset collected in urban canyons.
The experimental results show that TC GNSS-INS inte-
gration performs better than LC GNSS-INS integration.
Besides, TC integration using FGO performs the best of
the four integrations. According to the analysis results, the
superior performance of FGO compared to that of EKF
is attributable to the 1. multiple iterations, and 2. greater
amount of data applied in the FGO. Therefore, we believe
that FGO-based sensor fusion may be a promising replace-
ment for EKF-based methods in the coming decades.
Besides, an analysis of the effect of window size on FGO

performance shows that appropriate window size is highly
correlated with environmental conditions. Recently,
context awareness (Gao & Groves, 2020) has been used
to identify the potential sensor noise generated in GNSS
positioning. The use of environmental context-awareness
to identify the period during which sensor noise char-
acteristics are similar or constant is a promising way to
adaptively tune the window size. For example, by limiting
thewindow size to alignwith the time over which the error
models are roughly constant or similar, correct relative
weightings are preserved, which likely contribute to the
better performance obtained for adaptive window size.
As this paper analyzed only one dataset collected in a

typical urban canyon of Hong Kong, it will be interesting
and necessary to determine how FGO will handle multi-
ple datasets from diverse urban scenarios. In the future, we
will examine FGO performance using more sensors (e.g.,
LiDAR) with our recently published UrbanLoco dataset
(Wen et al., 2020), which comprises a complete set of vehic-
ular navigation sensor data collected in both Hong Kong
and downtown San Francisco.
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APPENDIX A: TRANSFORMATIONMATRIX
The variable 𝐑𝐺𝐿 is a transformation matrix that trans-
forms the acceleration measurement obtained from the

local frame to the global frame based on 𝐱𝑘, which can be
expressed as

𝐑𝐺𝐿

=

⎡⎢⎢⎢⎢⎣
−sin (∅𝑙𝑜𝑛) −sin (∅𝑙𝑎𝑡) cos (∅𝑙𝑜𝑛) cos (∅𝑙𝑎𝑡) cos (∅𝑙𝑜𝑛)

cos (∅𝑙𝑜𝑛) −sin (∅𝑙𝑎𝑡) sin (∅𝑙𝑜𝑛) cos (∅𝑙𝑎𝑡) sin (∅𝑙𝑜𝑛)

0 cos (∅𝑙𝑎𝑡) sin (∅𝑙𝑎𝑡)

⎤⎥⎥⎥⎥⎦
(A1)

where ∅𝑙𝑜𝑛 and ∅𝑙𝑎𝑡 represent the longitude and latitude,
respectively, based on theWGS84 geodetic system (Groves,
2013), which can be derived from 𝐱𝑘. The variable 𝐑𝐿𝐵 is
the transformationmatrix that transforms the acceleration
measurements obtained from the body to the local frames
based on 𝐑𝑙𝑜𝑐𝑎𝑙

𝑘,𝑟
, which can be expressed as follows:

𝐑𝐿𝐵 = 𝐑𝑧
𝐿𝐵 (𝛼)𝐑

𝑦
𝐿𝐵 (𝛽)𝐑

𝑥
𝐿𝐵 (𝛾) (A2)

with𝐑𝑧
𝐿𝐵 (𝛼) =

⎡⎢⎢⎣
cos (𝛼) − sin (𝛼) 0

sin (𝛼) cos (𝛼) 0

0 0 1

⎤⎥⎥⎦
𝐑
𝑦
𝐿𝐵 (𝛽) =

⎡⎢⎢⎣
cos (𝛽) 0 sin (𝛽)

0 1 0

−sin (𝛽) 0 cos (𝛽)

⎤⎥⎥⎦
𝐑𝑥
𝐿𝐵 (𝛾) =

⎡⎢⎢⎣
1 0 0

0 cos (𝛾) −sin (𝛾)

0 sin (𝛾) cos (𝛾)

⎤⎥⎥⎦
where 𝛼, 𝛽, and 𝛾 denote the yaw, pitch, and roll angles,
respectively, and 𝐑𝑧

𝐿𝐵(𝛼), 𝐑
𝑦
𝐿𝐵(𝛽), and 𝐑

𝑥
𝐿𝐵(𝛾) denote their

rotation matrices.
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